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A B S T R A C T

We describe and then model satellite-inferred severe (stand-replacing) fire occurrence relative to

topography (elevation, aspect, slope, solar radiation, Heat Load Index, wetness and measures of

topographic ruggedness) using data from 114 fires > 40 ha in area that occurred between 1984 and 2004

in the Gila Wilderness and surrounding Gila National Forest. Severe fire occurred more frequently at

higher elevations and on north-facing, steep slopes and at locally wet, cool sites, which suggests that

moisture limitations on productivity in the southwestern US interact with topography to influence

vegetation density and fuel production that in turn influence burn severity. We use the Random Forest

algorithm and a stratified random sample of burn severity pixels with corresponding pixels from 15

topographic layers as predictor variables to build an empirical model predicting the probability of

occurrence for severe burns across the entire 1.4 million ha study area. Our model correctly classified

severity with a classification accuracy of 79.5% when burn severity pixels were classified as severe vs. not

severe (two classes). Because our model was derived from data sampled across many fires over a 20-year

period, it represents average probability of severe fire occurrence and is unlikely to predict burn severity

for individual fire events. However, we believe it has potential as a tool for planning fuel treatment

projects, in management of actively burning fires, and for better understanding of landscape-scale burn

severity patterns.
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1. Introduction

As a keystone disturbance process, fire influences local, regional
and global processes (Agee, 1993). In recent decades, fires have
burned millions of hectares in the western US costing billions of
dollars to contain and suppress (www.nifc.gov), likely reflecting
both a legacy of fire exclusion and climate (Westerling et al., 2006).
Many people are concerned that future fires will be larger and
more severe (Running, 2006, NIFC, 2009) as Miller et al. (2009)
demonstrated for recent fires in the Sierra and Cascade mountains
of California. Large, stand-replacing fires are difficult to suppress,
and can have significant ecological consequences when resulting in
debris flows (Cannon and Reneau, 2000), accelerated soil erosion
(Pannkuk and Robichaud, 2003) and changes in dominant
vegetation type post-fire (Savage and Mast, 2005).

Burn severity indicates the magnitude of ecological change
associated with a wildfire (see review by Lentile et al., 2006a).
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Here, we infer burn severity from Landsat satellite imagery pre-
and post-fire, which largely reflects changes in overstory vegeta-
tion post-fire relative to pre-fire conditions (Lentile et al., 2006a).

Spatial patterns of burn severity over time are poorly under-
stood. Topography, vegetation and climate interact in complex
ways to influence fire extent and fire occurrence across a range of
spatial scales (Stephens, 2001; Rollins et al., 2002). Paleoecological
data suggest that fire extent and vegetation types have varied with
past climate variability (Whitlock et al., 2003), and recent research
has linked Holocene warming to severe, stand-replacing fires in
dry pine forests in Idaho (Pierce et al., 2005). Land use is also
important, as decades of fire exclusion have altered stand structure
and surface fuels loads, likely contributing to fire regime changes
in forests that once burned frequently (Covington and Moore,
1994; Moore et al., 2004).

Severe fire has been related to vegetation and topography for
individual large fire events. Odion et al. (2004) described patterns
of severe fire occurrence within a large fire in central Oregon.
Lentile et al. (2006b) used hundreds of field measurements and
remote sensing to evaluate the relative influence of stand structure
and topography on severe fire occurrence within the 2000 Jasper
Fire in the Black Hills of South Dakota. Alexander et al. (2006)

http://www.nifc.gov/
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Fig. 1. Burn severity atlases (1984–2004) for the 1.4 million ha Gila National Forest

in New Mexico. Fires varied in burn severity (shaded polygons, 114 fires burned

152,800 ha) as interpreted from Landsat satellite imagery using the Relative

differenced Normalized Burn Ratio (RdNBR). Solid dark line is the Gila NF boundary.

Dotted inner line denotes the Gila and Aldo Leopold Wilderness Complex boundary.
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examined the occurrence of severely burned areas within two fires
in northern California and southern Oregon. Few studies have
encompassed burn severity from many fires at once burning over
decades (Holden et al., 2007; Miller et al., 2009), and so we lack a
general understanding of the patterns of burn severity from many
fires across gradients of vegetation and topography through time.
Availability of pre- and post-fire Landsat images from the
Monitoring Trends in Burn Severity (MTBS) project (http://
fsgeodata.fs.fed.us/mtbs/) will greatly facilitate investigation of
burn severity relative to topography, land use, climate, vegetation
and disturbance history, something that is sorely needed (Morgan
et al., 2001).

Land managers require tools that can help predict where and
when severe, stand-replacing fires are likely to occur. When
charged with managing the impacts of fire and fuels management
on streams, fish, and other resources (Dunham et al., 2003; Rieman
et al., 2003), predictive models of burn severity would help them in
deciding where and when to suppress fires and manage fuels, and
how aggressively. In this analysis, we chose to use inferences from
pre- and post-burn satellite imagery of recent fires and topo-
graphy. Burn severity inferred from differenced pre- and post-fire
satellite imagery is available for many fires that have burned across
a range of weather and climate conditions offering relatively
consistent data on post-fire effects over large areas. Given the
tremendous complexity of fire behavior and landscape–fire
interactions, empirically based methods of predicting burn
severity have the potential to capture complex relationships
between vegetation, topography and fire behavior that may be
difficult to model with physically based fire behavior models or
gradient modeling approaches.

The research objectives of this analysis were two-fold. First, we
evaluate 20 years of satellite-derived burn severity data with
respect to topography and Potential Vegetation Type (PVT) across
the Gila National Forest (Gila NF). Second, we develop a predictive
model describing the probability of severe fire occurrence relative
to a suite of topographic variables.

Most of the fires (90 of 114 fires and more than 80% of the area
burned) we analyzed occurred within the Gila Aldo Leopold
Wilderness Complex (GALWC), under relatively natural conditions.
Within the wilderness, some fires are suppressed, but naturally
ignited fires are often managed with limited suppression under the
Wildland Fire Use program adopted there in 1974 or because they
are low priority for suppression when other fires are threatening
people and homes. Pioneering fire management efforts in the
GALWC have made it a model for wilderness fire management in
the United States (Burke, 2004). We take advantage of this rich
history of large fires that burn during the natural fire season and
with relatively little influence of roads, grazing, and logging to
examine broad-scale patterns of severe fire occurrence and their
association with vegetation and topography.

2. Methods

2.1. Study areas

Our research focused on the 1.4 million ha Gila National Forest
in New Mexico, USA (Fig. 1). This area encompasses diverse
landforms and topography. Many of the fires included in this study
burned in the central and northern portion of the Gila Wilderness,
where extensive stands of ponderosa pine and mesic ponderosa
pine/Douglas-fir forests grow on broad, flat mesas. These forests
transition into mixed-conifer and spruce-fir forests to the north,
where the Mogollon Mountains rise to an elevation of 3200 m.
Steep, rugged terrain dominates the Diablo and Pinos Altos ranges
to the south. Precipitation in our study area is bimodal, occurring
mainly in the winter, and following a typically dry period in the
spring, as monsoon rain storms that begin, on average, in the first
week of July (Sheppard et al., 2002). Lightning is frequent at mid
and upper elevations in our study area (Rollins, 2001).

2.2. Burn severity atlas construction and analysis

A digital burn severity atlas including all fires >40 ha that
occurred in 1984–2004 was created for the Gila National Forest
using pre- and post-fire Landsat images provided by the
Monitoring Trends in Burn Severity (MTBS) project (http://
fsgeodata.fs.fed.us/mtbs/). All images were terrain corrected and
converted to reflectance following protocols developed as part of
the MTBS program. Pre- and post-fire spring scenes (15 May–15
July) in the Gila NF were processed using the Relative Differenced
Normalized Burn Ratio (RdNBR) (Miller and Thode, 2007). The
RdNBR is a variant of the dNBR, a spectral index first developed by
Lopez Garcia and Caselles (1991) to map burned areas and then
later used by Key and Benson (2005) to assess post-fire effects.
Relative to dNBR, the RdNBR showed stronger and more linear
correlations with field data from our study and is appropriate given
the prevalence of open-canopy vegetation in our study area.

Each fire was manually digitized on-screen using a combination
of dNBR and Landsat images. Digital fire perimeter databases, also
called a fire atlas or a digital polygon fire history (produced by the
GIS analyst on the Gila National Forest) were used to identify
names and dates of major fires. Landsat bands 7:4:1 color
composite and RdNBR images created for each fire were then
used to verify the location of fires documented in the fire perimeter
database and to locate additional smaller fires visible on the
imagery but not in the fire perimeter databases. The resulting
perimeters were then used to subset the RdNBR for each fire in
ArcGIS (v. 9.2; ESRI, Inc. 2005). More than 40,000 ha burned
multiple times during the period of our study (26% of the 153,000
total ha burned). Inclusion of recently reburned areas could
confound our overall interpretation of burn severity patterns.
Therefore, we excluded these data from this analysis by assigning
these areas in the RdNBR a value of the first fire occurrence. Burn
severity patterns within reburned areas are the subject of future
research.

http://fsgeodata.fs.fed.us/mtbs/
http://fsgeodata.fs.fed.us/mtbs/
http://fsgeodata.fs.fed.us/mtbs/
http://fsgeodata.fs.fed.us/mtbs/


Table 1
Predictor variables included in Random Forest models.

Variable Description Reference

PVT Potential Vegetation Type Keane (2000)

ELEV Elevation (meters) USGS (1999)

SAT Transformed slope/aspect Stage (1976)

HLI Heat Load Index McCune and

Keon (2002)

CTI Compound Topographic Index Moore et al. (1993)

SOLAR Solar radiation (April–July) Fu and Rich (1999)

DISS3 Modified dissection

coefficient (3�3)

Pike and Wilson

(1971)

DISS15 Modified dissection

coefficient (15�15)

Pike and Wilson

(1971)

DISS27 Modified dissection

coefficient (27�27)

Pike and Wilson

(1971)

ROUGH3 Topographic roughness

(3�3)

Murphy et al.

(in press)

ROUGH15 Topographic roughness

(15�15)

Murphy et al.

(in press)

ROUGH27 Topographic roughness

(27�27)

Murphy et al.

(in press)

ERR3 Elevation relief ratio

(3�3)

Evans (1972)

ERR15 Elevation relief ratio

(15�15)

Evans (1972)

ERR27 Elevation relief ratio

(27�27)

Evans (1972)

HSP Hierarchical slope position Murphy et al.

(in press)
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2.3. Field data collection

Burn severity on the ground was measured using Composite
Burn Index (CBI) on 30 m diameter plots (Key and Benson, 2005)
between 20 May 2004 and 20 July 2004. Within the perimeter of
the 48,000 ha, 2003 Dry Lakes Fire, 109 sampling points were
randomly located and stratified by four burn severity classes using
a 23 October 2003 post-fire Landsat TM-derived Normalized Burn
Ratio (NBR) image provided by the Remote Sensing Application
Center. Field plots were randomly assigned to each severity class
(unburned, low, moderate and high severity) using a GIS and then
located in the field using GPS navigation.

Applying the CBI in the field post-fire requires an ocular
assessment of the degree of change in multiple soil and vegetation
strata as a result of the fire. While CBI is subjective, we were
confident in the consistency of our estimates after spending three
months collecting fuels, understory vegetation and forest structure
data within the burned area the previous year. The CBI is a useful
tool for rapidly assessing post-fire change and relating that change
to reflected radiation detected by a satellite sensor. We removed
two CBI measures from final CBI estimates (change in species
composition, change in soil color) because they were difficult to
objectively quantify in the field. We also removed estimates of
medium and large-diameter fuel consumption and bole char
height because we felt they were unlikely to be detectable by the
Landsat sensor. These estimates were collected in the field but
removed from the final CBI values that were used to validate the
RdNBR. Comparison of scatter plots using both the full and
modified CBI values showed that the removal of these variables
had little overall effect on the final CBI measure (correlation
between CBI and dNBR remained the same at 0.78).

Burn severity images for each fire were classified into four
severity classes (unchanged, low, moderate, high), with break-
points for each severity class defined based on CBI data. Because
post-fire ecological effects occur along a continuum, classification
of burn severity data may reduce their sensitivity. However, doing
so simplifies data analysis and interpretation. We classified
‘‘severe’’ as burned areas where more than 75% of pre-fire
overstory tree foliage volume was black or red post-fire,
corresponding to a CBI value of 2.2 (RdNBR � 665). Scatter plots
of RdNBR and the CBI stratified by PVT showed no patterns of
separation. Therefore, the same threshold was applied across all
vegetation types. This slightly conservative threshold was selected
based on the assumption that some delayed mortality was likely to
occur in the years following the fire. Because we lack field data on
burn severity for previous fires, CBI data from this one 2003 fire
was used to set thresholds for all burns in the 20-year record.
However, comparison of pre- and post-fire high resolution digital
aerial photographs suggests that for three fires through time (1993,
1996, and 1997), fire-created canopy openings in ponderosa pine,
Douglas-fir and mixed-conifer forests are mapped with a high
degree of accuracy when this threshold is applied to earlier fires
(data not shown).

2.4. Data analysis

We used sixteen independent variables in our analyses.
Potential Vegetation Type (PVT) is a classification of biophysical
setting named for the vegetation that would occur at a site after
long periods without disturbance. We used a PVT classification
developed by Keane et al. (2000) for the Gila National Forest as a
stratifying variable. Fifteen independent variables were derived
from a 30-m digital elevation model (http://ned.usgs.gov/)
(Table 1). These included elevation (ELEV), an interaction between
slope and aspect (SAT) (slope � COS[aspect]) (Stage, 1976), Heat
Load Index (HLI) (McCune and Keon, 2002), solar radiation (SOLAR)
(Fu and Rich, 1999) and a Compound Topographic Index (CTI)
(Moore et al., 1993). Three measures of terrain ruggedness and
variability (Dissection (DISS) (Pike and Wilson, 1971), Roughness
(ROUGH) (Murphy et al., in press) and Elevation Relief Ratio (ERR)
(Evans, 1972)) were also included and calculated using 3 � 3 and
15 � 15 and 27 � 27 window sizes. Finally, the hierarchical slope
position (HSP) described by Murphy et al. (in press) was also
included. All variables were classified using equal interval breaks
for Bayesian conditional probabilities. Roughness, dissection and
elevation relief ratio indices were excluded from Bayesian
conditional probabilities because classified forms of this variable
are difficult to interpret.

We used two methods to analyze patterns of severe fire
occurrence with respect to vegetation and topography. First,
relationships between individual predictor variables and severe
fire occurrence were graphed and assessed using conditional
probabilities in the Bayes extension for Arcview 3.3 (ESRI 2002)
(Aspinall, 1992, 2000). Conditional probabilities describe the
likelihood of severe fire occurring with respect to each indepen-
dent variable given the proportion of that variable within the total
area burned. Conditional probabilities were calculated for eight
classified topographic variables individually using a binary (severe
vs. other burned) grid of total burned area as the response.

Second, we use a variant of Classification and Regression Trees
called Random Forests (Breiman, 2002) to assess the ability of
landscape variables to predict severe fire occurrence. We used the
Random Forest package developed for R (R core Development
Team 2007) by Liaw and Weiner (2002). Random Forest imple-
ments a bootstrapping procedure whereby approximately 66% of
the data are used in a classification tree with the remaining data
used as a validation data set (termed the ‘‘out of bag’’ sample). The
Random Forest algorithm uses this bootstrapping procedure to
generate thousands of classification trees. In addition to the
bootstrap replicates, multiple variables are permutated through
each node as a means of preventing over-fit and assessing the
mean square error (MSE) variable importance. This method is
computationally very intensive, but has yielded robust predictions
across a variety of applications (Prasad et al., 2006; Rehfeldt et al.,

http://ned.usgs.gov/


Table 2
Area burned by burn severity class (RdNBR) within each Potential Vegetation Type (PVT) on the Gila NF (1984–2004).

PVT % of PVT in study area Low (ha) % Moderate (ha) % High (ha) % Area burned (ha)

Sparse veg. 10 1,030 62 4,540 27 1,809 11 16,609

PJ-Oak 39 18,856 75 4,937 20 1,242 5 25,034

Ponderosa pine 19 33,412 74 9,467 21 2,085 5 44,965

Douglas-fir 7 24,223 67 8,417 23 3,757 10 36,397

Mixed-conifer 4 10,917 55 4,774 24 4,043 20 19,733

Spruce-Fir 1 1,625 49 705 21 962 29 3,292

Riparian 1 3,388 50 2,692 39 764 11 6,844

Area burned 102,680 67 35,532 23 14,661 10 152,874

Only fires >40 ha in size are included. Percentages are of the area burned within each PVT. Of the 1.4 million ha on the Gila National Forest, 11% (152,874 ha) burned at least

once within the PVTs listed.
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2006). We applied the Random Forest algorithm using RdNBR data
classified into two classes (severely burned vs. other) and into
three classes (low, moderate and high burn severity classes). We
used fourteen topographic variable derived from a 30-m digital
Elevation Model (Table 1). We ran Random Forest for all PVTs
combined with PVT included as an independent variable in the
model, and then ran separate models for each individual PVT. The
low proportion of severe relative to other burn severity classes
initially led to slight overprediction. To account for this bias, we
used a dual-phase stratified random sampling routine to select
more balanced proportions of each severity class across the range
of PVT’s. Model error stabilized after�1000 bootstrap replicates, so
final models were run with 2000 replicates. The m parameter
(number of variables permuted through each node) was optimized
with four variables selected at each node permutation.

3. Results

The RdNBR was a good predictor of CBI field measurements
(r2 = 0.78; Fig. 2). In contrast with other studies that have
compared dNBR to CBI values (Van Wagtendonk et al., 2004;
Alexander et al., 2006), the relationships between the CBI and
RdNBR we obtained were linear. Of the 1.4 million ha Gila National
Forest, 152,874 (about 11%) burned between 1984 and 2004, and
10% of the burned area was burned severely (Table 2) (note that
this excludes those areas that burned more than once 1984–2004).
The percentage of area burned with low, moderate and high
severity varied among vegetation types (Table 2). The upper
Fig. 2. Modified Composite Burn Index (CBI) from 109 field plots vs. the differenced

Relative Normalized Burn Ratio (RdNBR) collected on the 2003 Dry Lakes Fire, New

Mexico. Data were collected between 20 May 2004 and 20 July 2004, 1 year after the

2003 fire. Dashed lines show threshold between ‘‘moderate’’ and ‘‘severe’’ burn

severity classes (CBI = 2.2; RdNBR = 665).
elevation spruce-fir and mixed-conifer forests PVTs had the
highest proportion of the area burned severely (Table 2). Severely
burned areas were found disproportionately in mesic PVT’s, on
north and northeast-facing slopes (azimuth 315–360 and 0–908),
on steep slopes (>16%), and where solar radiation values were low
to moderate (99–113 kWH/m2) (Fig. 3a–d). Severe fire occurrence
was also associated with low CTI values, where heat load (HLI) was
either very low or very high, at high elevations and high slope
position values, likely reflecting the tendency for severe fire to
occur at the crest of hills (Fig. 3e–h). These patterns are consistent
with those observed in the field and those experienced by local fire
managers.

Classification accuracy of Random Forest models on all PVTs
combined was 79.5% and 64% for two and three burn severity
classes, respectively (Table 3). With the exception of the spruce-fir
PVT, classification accuracy decreased slightly across a gradient
from dry (Pinyon–Juniper) to wet (mixed-conifer) PVT’s (Table 3).

4. Predictive model development

The Random Forest model described above was used to build a
predictive model surface for the Gila National Forest using the
Random Forest prediction function available in R (Fig. 4) (Liaw and
Weiner, 2002). The final Random Forest model used to build the
prediction surface was created from a random stratified sample of
23,000 pixels, stratified by two severity classes (severe vs. all other
burn severity classes) and PVT. This dual-phase stratification
approach ensured that the sample distribution was balanced
across each severity class and that it represented a range of
biophysical settings. Each predictor variable used in the Random
Forest model was built, clipped to the extent of the Gila National
Forest and then converted to ASCII text files with matching extents
and projection. The Random Forest algorithm implemented in R
contains a prediction function that assigns each output cell to a
class based on the majority vote counts of the terminal nodes from
each classification tree in the model. We modified this output by
programming a function to convert the vote counts to probability
distributions, rather than a straight class prediction. Thus, each
30 m cell in the prediction surface was assigned a probability of
burning as ‘‘high severity’’ based on its underlying topographic
characteristics. This gives much more flexibility in interpretation
and use of the final predictive model surface.

5. Discussion

The relationship between burn severity and topography reflects
the influence of biophysical gradients on site productivity and
vegetation. Forest ecosystem productivity in the southwestern US
is primarily water-limited (Chapin et al., 2002), and topographic
factors like elevation, slope aspect and Compound Topographic
Index (CTI) influence biomass production and fuel accumulation



Fig. 3. Bayesian conditional probability of severe fire occurrence for (a) Potential Vegetation Type, (b) aspect class, (c) slope class, (d) cumulative April–June solar radiation

class, (e) Compound Topographic Index class, (f) Heat Load Index class, (g) Elevation class and (h) slope position class. Black bars indicate percentage of total area burned that

was classified as burned severely. Grey bars show percentage of area in all other burn severity classes. Black bars higher than grey bars for an individual class indicate a higher

proportion of severe fire occurring in that class relative to the total area that was burned.

Z.A. Holden et al. / Forest Ecology and Management 258 (2009) 2399–2406 2403



Table 3
Classification error rates and important predictor variables from Random Forest

models for all PVTs and each PVT analyzed separately using a 2-class (high vs. other

burn severity) and 3-class (low, moderate, high severity) RdNBR grid.

PVT Classification error Important variables

Severity classification

2-Class 3-Class

All PVTs 20.5% 38.3% ELEV, SAT, ROUGH27, HSP

Spruce-fir 14.6% 25.0% ELEV, ERR15, SAT, HLI

Mixed-conifer 24.6% 40.4% ELEV ROUGH27, SAT, HSP

Douglas-fir 23.2% 40.7% ELEV ROUGH27, SAT, HSP

Ponderosa pine 22.9% 39.3% ELEV, ROUGH27, HSP, SAT

PJ-Oak 19.3% 37.3% ELEV, HLI, SAT, HSP

Riparian 18.0% 29.2% ELEV, CTI, HSP, SAT

See Table 1 for abbreviations.
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rates. Even slight increases in effective moisture can lead to
significant changes in vegetation structure, such as Douglas-fir
encroachment on slightly north-facing slopes and ponderosa pine
establishment at mesic sites within areas dominated by pinyon
and juniper. This pattern appears to shift in upper elevation mixed-
conifer and spruce-fir forest types, where increased solar insola-
tion and Heat Load Index values, factors that would increase
evapotranspiration and drying of surface fuels, are associated with
increasing burn severity. This general pattern is supported by
Random Forest model results. Classification accuracies are highest
for dry vegetation types and decrease across a gradient from dry to
Fig. 4. Random Forest model prediction surface for the Gila National Forest. Each

30 m2 cell is assigned a probability of that cell burned severely based on its

underlying topographic characteristics. Note that low elevation grass and shrub-

dominated areas to the North and East have been excluded from the predictive

model.
moist sites. Classification accuracy then increases significantly
within the highest elevation spruce-fir forests.

Winter precipitation combined with the timing and intensity of
precipitation events during the fire season influences green-up
patterns in our study area, with the length of the dry period
preceding summer monsoon rains influencing fire occurrence,
presumably by affecting vegetation productivity and stress.
Combined with temperature, relative humidity and the timing
and intensity of monsoon rains, these precipitation variables
should largely determine fuel moistures and the length of the
burning window during the fire season, which in turn influences
fire extent and severity (Holden et al., 2007). The length of this
window is shorter at higher elevations, where snow pack delays
early season green-up. Within the drier PVTs at lower elevations,
spring precipitation patterns influence the peak and subsequent
decline of green-up preceding monsoon rainstorms. We speculate
that these patterns are reflected in the patterns of severe fire
occurrence in this landscape (Holden and Morgan, in review). At
lower elevations, dry PVTs have a long window within which
burning is possible. At locally wet and more productive sites,
higher vegetation density and fuel accumulation means that the
effects of fire will be more severe (greater change pre- to post-fire).
Given the relatively short burn window within high elevation,
mesic vegetation types, extremely cool, wet areas (e.g. those at
high elevation, north-facing slopes) may not have experienced
ignition when conditions were favorable for burning during this
study period. In contrast, fuels on dry and relatively warm south-
facing slopes within these cool sites will dry earlier and thus be
available for burning should ignition occur.

The strength of relationships between severe fire occurrence
and topographic variables may also reflect connections between
topography and fire behavior. Slope aspect position influences the
type of vegetation that will occur on a site as well as drying rates of
live and dead fuel moistures, directly influencing fire intensity
when fire occurs. Slope steepness is known to directly influence
fire rate of spread (Rothermel, 1972). Other topographic features
like slope curvature and topographic complexity (described by
variables like the Elevation Relief Ratio (ERR) and topographic
Roughness (ROUGH)) may exert more subtle influences on fire
behavior by influencing microclimate, wind patterns or the length
of wind-driven fire runs. They also reflect soil development and
water holding capacity.

Taken together, these results support the idea that climatic and
topographic controls on fire regimes are hierarchical (Heyerdahl
et al., 2001). The strong relationship between topography and burn
severity reflects the ‘‘bottom up’’ topographic and vegetation
control of burn severity occurrence and the tight coupling of
climate, topography and vegetation in this semi-arid region, where
moisture limits vegetation production. The limited human
influence on the fuels and vegetation in the majority of fires that
burned within the wilderness has allowed these fire–vegetation–
topography interactions to play out for decades. Random Forest
predictions decrease in their classification accuracy from dry to
moist vegetation types (Table 3), which suggests that vegetation–
topographic coupling and its influence on fire behavior breaks
down in wetter vegetation types. We hypothesize that the relative
amount of change in vegetation accumulation within drier
vegetation types in the absence of recent fires would have been
greater in dry forests than in upper elevation PVTs, where
historically, fires were less frequent (Abolt, 1996).

6. Study and model limitations

There are several important limitations to the analyses
presented here. First, we have by necessity used relationships
between field measures of burn severity in a single large fire in



Z.A. Holden et al. / Forest Ecology and Management 258 (2009) 2399–2406 2405
2003 to assign severity classes to all fires. Timing of image
acquisition and vegetation phenology at the time of image
acquisition will all influence the pre- and post-fire image reflec-
tance and hence the RdNBR spectral index values for each fire.
Lacking field data for these earlier fires, it is impossible to validate
the burn severity classifications assigned to these fires. To account
for this potential error, we used carefully matched pre- and post-
fire images that were within 20 days of each other. Second, we used
what we consider a conservative threshold (>75% overstory
canopy brown or red) to assign the break between severe and all
other classes. Our experience in the field and with several years of
working with these data has shown that the dNBR and RdNBR
indices are quite good at capturing areas of complete overstory
vegetation removal post-fire. Nonetheless, there is undoubtedly
some error introduced in the assignment of fixed severity
thresholds using thresholds derived from image and field data
from a single image. Such errors would in turn affect the resulting
model accuracy and prediction.

Temporal and spatial patterns of severe fire occurrence inferred
from only twenty years of data should be interpreted cautiously.
We have not accounted for the influence of vegetation structure,
which influences burn severity, nor did we analyze climate and
weather data. Although some of the fire years included in this
study were very wet (e.g. 1984–1987) and others were very dry
(e.g. 2002) we cannot assume that these data encompass the full
range of possible fire–vegetation–climate interactions. We also
note the potential significance of fire origin and direction of travel
in this study area. For example, because most fires during the last
20 years have started in central portions of the Gila Wilderness and
spread to the north, many north-facing slopes experienced backing
fires. We observed in the field many north-facing slopes at mid-
elevations dominated by ponderosa pine and Douglas-fir forest
types that had experienced surface fires at least once during the
last 20 years, despite relatively dense stands and young understory
Douglas-fir tree encroachment. When these north-facing slopes
finally experienced a fire that began outside the wilderness and
spread to the south, many of them burned as stand-replacing fires.
We cannot rule out the possibility that wind direction and other
aspects of weather and fuels not evaluated here may also be
responsible for the severity patterns observed within mixed-
conifer and spruce-fir forest types.

7. Implications for management

One impetus for this analysis was concern from land managers
about the impacts of fires in the Gila Wilderness on endangered
Gila trout populations (Oncorhynchus gilae). Debris flows following
fires in 1995, 2002 and 2003 severely impacted or extirpated
several local populations of these fish (Probst and Monzingo, land
managers, Gila National Forest, personal communication). Know-
ing what areas are most likely to burn severely can help local land
managers in their decisions about fire management before, during
and after fires within areas inhabited by Gila trout.

Interpreting burn severity from satellite data for hundreds of
fires across a range of environments and climatic conditions will
greatly enhance our understanding of why and where fires burn
severely. Such analyses will help us to strategically target fuels and
fire management. They may also help us better understand the
climate and weather conditions under which fire management
options like Wildland Fire Use may or may not be appropriate.

Our predictive model should be used with caution, as the post-
fire ecological effects of any particular future fire will likely vary
with the local weather and fuels conditions. The model’s predictive
capability of landscape and topographic variables alone, without
data on pre-fire surface fuel loading and forest structure, and
without during-fire weather, was greater than 79% overall, and
slightly higher within individual PVTs. Data on these variables as
well as on past fires and vegetation conditions could help improve
our ability to predict where and when fires are likely to burn
severely.

Logging, grazing, and other vegetation disturbances will likely
alter the vegetation–topography relationships, confounding the
prediction of burn severity in future fires. Further evaluation of
burn severity–topography interactions across a range of environ-
ments, vegetation types and land uses will be necessary to
understand how these patterns vary across space.

Understanding the complex interactions among fire, vegeta-
tion, topography, climate, land use and disturbance is critical to
predicting how fire regimes will change in response to climate and
future land use (Morgan et al., 2001). Our current understanding of
burn severity as an aspect of fire regimes is mainly theoretical or
based on anecdotal evidence and case studies from a few fires. We
hope this effort and the one by Miller et al. (2009) will be the first of
further efforts to evaluate patterns of burn severity across multiple
fires over multiple years. Through the Monitoring Trends in Burn
Severity (MTBS) project, data similar to ours are now available
nationwide for thousands of fires. These data will be immensely
valuable for understanding burn severity to complement our
growing understanding of fire extent and fire occurrence relative
to climate, land use, vegetation, topography and disturbance. In
future analyses, we will extend the predictive modeling described
here to forested areas of the western US.
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